DocumentCode :
585564
Title :
Interaction of cylindrically-symmetric relativistic electron beams with planar targets and plasmas: Theory and applications
Author :
Mosher, D.
Author_Institution :
Naval Res. Lab., Washington, DC, USA
Volume :
1
fYear :
1975
fDate :
3-5 Nov. 1975
Firstpage :
171
Lastpage :
196
Abstract :
A diffusion theory for the collisional interaction of relativistic electron beams with high-atomic-number plasmas* is used to develop analytical expressions for the beam-momentum distribution function in a slab target or plasma for the case of a normally-incident, well-collimated, monoenergetic beam with any radial profile. Moments of the distribution function are calculated for a Gaussian incident profile of arbitrary width. Using these, contour plots of energy deposition and current flow are determined. Bremsstrahlung intensity profiles corresponding to pinhole photographs of tightly-pinched beams are presented for various ratios of incident beam width to electron range. Theoretical deposition profiles, current transmission, and energy coupling of beam to target are compared with the results of Monte Carlo calculations.
Keywords :
bremsstrahlung; fusion reactor targets; pinch effect; plasma deposition; plasma diagnostics; plasma transport processes; plasma-beam interactions; relativistic electron beams; Gaussian incident profile; beam-momentum distribution function; bremsstrahlung intensity profiles; collisional interaction; current flow; cylindrically-symmetric relativistic electron beams; diffusion theory; energy deposition; high-atomic-number plasmas; monoenergetic beam; pinhole photographs; planar targets; radial profile; slab target; tightly-pinched beams; Abstracts; Analytical models; Computational modeling; Laboratories; Particle beams; Plasmas; Solid modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electron Beam Research & Technology, 1975 International Topical Conference on
Conference_Location :
Albuquerque, NM
Print_ISBN :
0-8493-6926-6
Type :
conf
Filename :
6397685
Link To Document :
بازگشت