DocumentCode
589131
Title
Mining Local Staircase Patterns in Noisy Data
Author
Le Van, T. ; Fierro, A.C. ; Guns, Tias ; van Leeuwen, Matthijs ; Nijssen, Siegfried ; De Raedt, Luc ; Marchal, K.
Author_Institution
Dept. of Comput. Sci., KU Leuven, Leuven, Belgium
fYear
2012
fDate
10-10 Dec. 2012
Firstpage
139
Lastpage
146
Abstract
Most traditional biclustering algorithms identify biclusters with no or little overlap. In this paper, we introduce the problem of identifying staircases of biclusters. Such staircases may be indicative for causal relationships between columns and can not easily be identified by existing biclustering algorithms. Our formalization relies on a scoring function based on the Minimum Description Length principle. Furthermore, we propose a first algorithm for identifying staircase biclusters, based on a combination of local search and constraint programming. Experiments show that the approach is promising.
Keywords
constraint handling; data mining; pattern clustering; search problems; biclustering algorithms; causal relationships; constraint programming; local search; local staircase pattern mining; minimum description length principle; noisy data; Bismuth; Data mining; Encoding; Fault tolerance; Fault tolerant systems; Noise; Programming; MDL; Staircase patterns; biclustering; constraint programming; pattern sets;
fLanguage
English
Publisher
ieee
Conference_Titel
Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on
Conference_Location
Brussels
Print_ISBN
978-1-4673-5164-5
Type
conf
DOI
10.1109/ICDMW.2012.83
Filename
6406434
Link To Document