DocumentCode :
589131
Title :
Mining Local Staircase Patterns in Noisy Data
Author :
Le Van, T. ; Fierro, A.C. ; Guns, Tias ; van Leeuwen, Matthijs ; Nijssen, Siegfried ; De Raedt, Luc ; Marchal, K.
Author_Institution :
Dept. of Comput. Sci., KU Leuven, Leuven, Belgium
fYear :
2012
fDate :
10-10 Dec. 2012
Firstpage :
139
Lastpage :
146
Abstract :
Most traditional biclustering algorithms identify biclusters with no or little overlap. In this paper, we introduce the problem of identifying staircases of biclusters. Such staircases may be indicative for causal relationships between columns and can not easily be identified by existing biclustering algorithms. Our formalization relies on a scoring function based on the Minimum Description Length principle. Furthermore, we propose a first algorithm for identifying staircase biclusters, based on a combination of local search and constraint programming. Experiments show that the approach is promising.
Keywords :
constraint handling; data mining; pattern clustering; search problems; biclustering algorithms; causal relationships; constraint programming; local search; local staircase pattern mining; minimum description length principle; noisy data; Bismuth; Data mining; Encoding; Fault tolerance; Fault tolerant systems; Noise; Programming; MDL; Staircase patterns; biclustering; constraint programming; pattern sets;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on
Conference_Location :
Brussels
Print_ISBN :
978-1-4673-5164-5
Type :
conf
DOI :
10.1109/ICDMW.2012.83
Filename :
6406434
Link To Document :
بازگشت