• DocumentCode
    589131
  • Title

    Mining Local Staircase Patterns in Noisy Data

  • Author

    Le Van, T. ; Fierro, A.C. ; Guns, Tias ; van Leeuwen, Matthijs ; Nijssen, Siegfried ; De Raedt, Luc ; Marchal, K.

  • Author_Institution
    Dept. of Comput. Sci., KU Leuven, Leuven, Belgium
  • fYear
    2012
  • fDate
    10-10 Dec. 2012
  • Firstpage
    139
  • Lastpage
    146
  • Abstract
    Most traditional biclustering algorithms identify biclusters with no or little overlap. In this paper, we introduce the problem of identifying staircases of biclusters. Such staircases may be indicative for causal relationships between columns and can not easily be identified by existing biclustering algorithms. Our formalization relies on a scoring function based on the Minimum Description Length principle. Furthermore, we propose a first algorithm for identifying staircase biclusters, based on a combination of local search and constraint programming. Experiments show that the approach is promising.
  • Keywords
    constraint handling; data mining; pattern clustering; search problems; biclustering algorithms; causal relationships; constraint programming; local search; local staircase pattern mining; minimum description length principle; noisy data; Bismuth; Data mining; Encoding; Fault tolerance; Fault tolerant systems; Noise; Programming; MDL; Staircase patterns; biclustering; constraint programming; pattern sets;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on
  • Conference_Location
    Brussels
  • Print_ISBN
    978-1-4673-5164-5
  • Type

    conf

  • DOI
    10.1109/ICDMW.2012.83
  • Filename
    6406434