• DocumentCode
    589264
  • Title

    Interval-Valued Centroids in K-Means Algorithms

  • Author

    Nordin, B. ; Chenyi Hu ; Chen, Bing ; Sheng, Victor S.

  • Author_Institution
    Dept. of Comput. Sci., Univ. of Central Arkansas, Conway, AR, USA
  • Volume
    1
  • fYear
    2012
  • fDate
    12-15 Dec. 2012
  • Firstpage
    478
  • Lastpage
    481
  • Abstract
    The K-Means algorithms are fundamental in machine learning and data mining. In this study, we investigate interval-valued rather than commonly used point-valued centroids in the K-Means algorithm. Using a proposed interval peak method to select initial interval centroids, we have obtained overall quality improvement of clusters on a set of test problems in the Fundamental Clustering Problem Suite (FCPS).
  • Keywords
    data mining; learning (artificial intelligence); pattern clustering; set theory; FCPS; data mining; fundamental clustering problem suite; initial interval centroids; interval peak method; interval-valued centroid; k-means algorithm; machine learning; quality improvement; Clustering algorithms; Data mining; MATLAB; Machine learning; Machine learning algorithms; Standards; Upper bound; Clustering; K-Means; interval computing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning and Applications (ICMLA), 2012 11th International Conference on
  • Conference_Location
    Boca Raton, FL
  • Print_ISBN
    978-1-4673-4651-1
  • Type

    conf

  • DOI
    10.1109/ICMLA.2012.87
  • Filename
    6406669