Title :
High-Level Strategies for Parallel Shared-Memory Sparse Matrix-Vector Multiplication
Author :
Yzelman, Albert-Jan Nicholas ; Roose, Dirk
Author_Institution :
Flanders ExaScience Lab. (Intel Labs. Eur.), Leuven, Belgium
Abstract :
The sparse matrix-vector multiplication is an important computational kernel, but is hard to efficiently execute even in the sequential case. The problems--namely low arithmetic intensity, inefficient cache use, and limited memory bandwidth--are magnified as the core count on shared-memory parallel architectures increases. Existing techniques are discussed in detail, and categorized chiefly based on their distribution types. Based on this, new parallelization techniques are proposed. The theoretical scalability and memory usage of the various strategies are analyzed, and experiments on multiple NUMA architectures confirm the validity of the results. One of the newly proposed methods attains the best average result in experiments on a large set of matrices. In one of the experiments it obtains a parallel efficiency of 90 percent, while on average it performs close to 60 percent.
Keywords :
cache storage; matrix multiplication; parallel architectures; parallel memories; shared memory systems; sparse matrices; NUMA architectures; arithmetic intensity; cache use; computational kernel; high-level strategies; memory bandwidth; memory usage; parallel efficiency; parallel shared memory; parallelization techniques; shared-memory parallel architectures; sparse matrix-vector multiplication; Bandwidth; Computer architecture; Indexes; Kernel; Particle separators; Sparse matrices; Vectors; Hilbert space-filling curve; NUMA architectures; Sparse matrix-vector multiplication; cache-oblivious; high-performance computing; matrix reordering; shared-memory parallelism; sparse matrix partitioning;
Journal_Title :
Parallel and Distributed Systems, IEEE Transactions on
DOI :
10.1109/TPDS.2013.31