• DocumentCode
    589403
  • Title

    Research on the Improvement of IRT Item Parameter Estimation Algorithm

  • Author

    Hua Wang ; Jing Chen ; Cuiqin Ma

  • Author_Institution
    Inf. Eng. Inst., Capital Normal Univ., Beijing, China
  • Volume
    1
  • fYear
    2012
  • fDate
    28-29 Oct. 2012
  • Firstpage
    160
  • Lastpage
    163
  • Abstract
    Focusing on the deficiencies of the existing IRT parameter estimation algorithm, the Resilient Back propagation algorithm and variable learning rate learning algorithm are used in the basis of artificial neural network algorithm to improve the network convergence speed, and the genetic algorithm is used to solve the local minima problem, then the improved BP algorithm is generated. Finally, the standard BP algorithm and the improved BP algorithm are realized through MATLAB. Experiments show that the improved BP algorithm compared with the standard BP algorithm improves the network accuracy, and accelerates the training speed and becomes a better parameter estimation method.
  • Keywords
    backpropagation; computer aided instruction; genetic algorithms; neural nets; psychology; IRT; artificial neural network algorithm; genetic algorithm; improved BP algorithm; item parameter estimation algorithm; item response theory; local minima problem; network convergence speed; resilient backpropagation algorithm; variable learning rate learning algorithm; Algorithm design and analysis; Educational institutions; Parameter estimation; Prediction algorithms; Software algorithms; Standards; Training; Genetic algorithm; Resilient Backpropagation; Variable learning rate learning algorithm;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Intelligence and Design (ISCID), 2012 Fifth International Symposium on
  • Conference_Location
    Hangzhou
  • Print_ISBN
    978-1-4673-2646-9
  • Type

    conf

  • DOI
    10.1109/ISCID.2012.48
  • Filename
    6406943