Title :
Energy-efficient high-level synthesis for HDR architectures with clock gating
Author :
Akasaka, H. ; Yanagisawa, M. ; Togawa, N.
Author_Institution :
Dept. of Comput. Sci. & Eng., Waseda Univ., Tokyo, Japan
Abstract :
With the miniaturization of LSIs and its increasing performance, demand for high-functional portable devices has grown significantly. At the same time, the problems for battery runtime and device overheating have occurred. On the other hand, the ratio of an interconnection delay to a gate delay has continued to increase as device feature size decreases. We have to estimate the interconnection delay and reduce energy consumption even in a high-level synthesis stage. Recently, an HDR architecture and its associated power-optimized high-level synthesis algorithm have been proposed which can effectively estimate the interconnection delays by introducing the idea of “huddles” into an LSI chip. It utilize multiple supply voltages and achieves power-optimized LSI synthesis but does not take into account the clock gatings. In this paper, we propose a high-level synthesis algorithm based on HDR architectures utilizing clock gatings. Firstly we focus on the number of the control steps at which we can apply the clock gating to registers. Secondly, we synthesize the huddles such that each of the synthesized huddles includes registers which have similar or exactly the same clock gating timings. The experimental results show that our proposed algorithm reduces energy consumption by a maximum of 14.9% compared with the conventional algorithm.
Keywords :
clocks; integrated circuit interconnections; large scale integration; logic design; logic gates; shift registers; HDR architectures; LSI chip; LSI miniaturization; battery runtime; clock gating; device overheating; energy consumption reduction; energy-efficient high-level synthesis; gate delay; high-functional portable devices; huddle-based distributed register architecture; interconnection delay; power-optimized LSI synthesis; power-optimized high-level synthesis algorithm; Clocks; Computer architecture; Delay; Energy consumption; Heuristic algorithms; Registers;
Conference_Titel :
SoC Design Conference (ISOCC), 2012 International
Conference_Location :
Jeju Island
Print_ISBN :
978-1-4673-2989-7
Electronic_ISBN :
978-1-4673-2988-0
DOI :
10.1109/ISOCC.2012.6407058