DocumentCode
592229
Title
Robust controllability of interval fractional order linear time invariant stochastic systems
Author
Caibin Zeng ; Yangquan Chen ; Qigui Yang
Author_Institution
Sch. of Sci., South China Univ. of Technol., Guangzhou, China
fYear
2012
fDate
10-13 Dec. 2012
Firstpage
4047
Lastpage
4050
Abstract
We deal with the robust controllability problem of the fractional order linear time invariant (FO-LTI) stochastic systems with interval coefficients. We present a necessary and sufficient condition for the controllability problem for the case when there is no interval uncertainty. Based on the concept of linear independency of interval vectors, we formulate the approach to check the robust controllability of interval FO-LTI stochastic systems by employing some simple but very effective sufficient condition for checking the linear independency of interval vectors. Finally, an illustrative example is presented. We show that this interval FO-LTI stochastic system is weakly controllable, while the corresponding deterministic system without noise perturbation is uncontrollable.
Keywords
controllability; linear systems; perturbation techniques; robust control; stochastic systems; uncertain systems; deterministic system; interval FO-LTI stochastic system; interval coefficient; interval fractional order linear time invariant stochastic system; interval uncertainty; interval vector; linear independency; noise perturbation; robust controllability; Asymptotic stability; Controllability; Robustness; Silicon; Stability analysis; Stochastic systems; Vectors; Fractional order stochastic systems; Interval linear time invariant systems; Linear independency; Robust controllability; Uncertain systems;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on
Conference_Location
Maui, HI
ISSN
0743-1546
Print_ISBN
978-1-4673-2065-8
Electronic_ISBN
0743-1546
Type
conf
DOI
10.1109/CDC.2012.6425949
Filename
6425949
Link To Document