DocumentCode :
592440
Title :
Cramer-Rao bounds on eigenvalue estimates from impulse response data: The multi-observation case
Author :
Abad Torres, Jackeline ; Roy, Sandip
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA
fYear :
2012
fDate :
10-13 Dec. 2012
Firstpage :
2128
Lastpage :
2133
Abstract :
We examine the effect of having multiple observations in the estimation of non-random modes of linear dynamical systems from noisy impulse response data. Specifically, for this estimation problem, we develop an explicit algebraic characterization of the Fisher information matrix and hence Cramer-Rao bound in terms of the eigenvalues and residues of the transfer function, and so develop some simple bounds on the minimum possible error variance for eigenvalue estimates in terms of the eigenvalues´ locations. We focus especially on developing a relationship between the Cramer-Rao bound on pole estimates for the multi-observation case, and those when each single observation is used separately for estimation.
Keywords :
control system analysis; eigenvalues and eigenfunctions; estimation theory; linear systems; matrix algebra; Cramer-Rao bounds; Fisher information matrix; eigenvalue estimates; explicit algebraic characterization; linear dynamical system; multiobservation case; noisy impulse response data; nonrandom modes; transfer function; Covariance matrix; Cramer-Rao bounds; Data models; Eigenvalues and eigenfunctions; Noise measurement; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on
Conference_Location :
Maui, HI
ISSN :
0743-1546
Print_ISBN :
978-1-4673-2065-8
Electronic_ISBN :
0743-1546
Type :
conf
DOI :
10.1109/CDC.2012.6426627
Filename :
6426627
Link To Document :
بازگشت