DocumentCode :
592897
Title :
On the Conditional Diagnosability of Cayley Graphs Generated by 2-trees and Related Networks
Author :
Cheng, Eddie ; Liptak, L. ; Ke Qiu ; Zhizhang Shen
Author_Institution :
Dept. of Math. & Stat., Oakland Univ., Rochester, MI, USA
fYear :
2012
fDate :
13-15 Dec. 2012
Firstpage :
58
Lastpage :
64
Abstract :
In this note, we utilize existing results to derive the exact value of the conditional diagnosability for Cayley graphs generated by 2-trees, which generalize the alternating group graphs. In addition, the corresponding problem for arrangement graphs and hyper Petersen networks will also be discussed.
Keywords :
fault trees; group theory; network theory (graphs); Cayley graph; arrangement graph; conditional diagnosability; group graph; hyper Petersen network; trees; Educational institutions; Fault diagnosis; Hypercubes; Program processors; USA Councils; Upper bound; $k$-trees; Cayley graph; Fault diagnosis; arrangement graphs; comparison diagnosis model; conditional diagnosability; hyper Petersen networks; self-diagnosable system;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pervasive Systems, Algorithms and Networks (ISPAN), 2012 12th International Symposium on
Conference_Location :
San Marcos, TX
ISSN :
1087-4089
Print_ISBN :
978-1-4673-5064-8
Type :
conf
DOI :
10.1109/I-SPAN.2012.15
Filename :
6428806
Link To Document :
بازگشت