Title :
A character degradation model for grayscale ancient document images
Author :
Kieu, V.C. ; Visani, Muriel ; Journet, Nicholas ; Domenger, Jean Phillipe ; Mullot, Remy
Author_Institution :
Lab. Bordelais de Rech. en Inf. - LaBRI, Univ. of Bordeaux I, Bordeaux, France
Abstract :
Kanungo noise model is widely used to test the robustness of different binary document image analysis methods towards noise. This model only works with binary images while most document images are in grayscale. Because binarizing a document image might degrade its contents and lead to a loss of information, more and more researchers are currently focusing on segmentation-free methods (Angelika et al [2]). Thus, we propose a local noise model for grayscale images. Its main principle is to locally degrade the image in the neighbourhoods of “seed-points” selected close to the character boundary. These points define the center of “noise regions”. The pixel values inside the noise region are modified by a Gaussian random distribution to make the final result more realistic. While Kanungo noise models scanning artifacts, our model simulates degradations due to the age of the document itself and printing/writing process such as ink splotches, white specks or streaks. It is very easy for users to parameterize and create a set of benchmark databases with an increasing level of noise. These databases will further be used to test the robustness of different grayscale document image analysis methods (i.e. text line segmentation, OCR, handwriting recognition).
Keywords :
Gaussian distribution; document image processing; image resolution; image segmentation; Gaussian random distribution; Kanungo noise model; OCR; binary document image analysis methods; character boundary; character degradation model; grayscale ancient document images; handwriting recognition; local noise model; noise regions; pixel values; segmentation-free methods; text line segmentation; Adaptation models; Computational modeling; Degradation; Gray-scale; Noise; Optical character recognition software; Robustness;
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
Print_ISBN :
978-1-4673-2216-4