Title :
Type-2 fuzzy labeled latent Dirichlet allocation for human action categorization
Author :
Xiao-Qin Cao ; Zhi-Qiang Liu
Author_Institution :
Sch. of Creative Media, City Univ. of Hong Kong, Hong Kong, China
Abstract :
We may represent human actions as a bag of spatiotemporal visual words extracted from input video sequences. For human action categorization, labeled LDA (L-LDA) is an extension of latent Dirichlet allocation (LDA) by providing action class labels to each video. To handle parameter uncertainty in L-LDA, this paper further extends L-LDA within the type-2 fuzzy set (T2 FS) framework, referred to as T2 L-LDA. Because the membership function (MF) of T2 FS is three-dimensional, we can use the primary MF to measures the degree of uncertainty that a visual word belongs to a specified human action category, and use the secondary MF to evaluate the fuzziness of the primary MF itself. We also develop the T2 fuzzy belief propagation (T2F BP) algorithm for approximate inference and parameter estimation based on T2 FS operations. On the KTH human motion data set, our results show that T2 L-LDA is able to enhance the overall performance in human action categorization.
Keywords :
backpropagation; fuzzy set theory; gesture recognition; image sequences; inference mechanisms; parameter estimation; uncertainty handling; KTH human motion data set; L-LDA; T2 fuzzy belief propagation algorithm; T2F BP algorithm; approximate inference algorithm; bag of spatiotemporal visual words; fuzziness evaluation; human action categorization; labeled LDA; membership function; parameter estimation; parameter uncertainty handling; type-2 fuzzy labeled latent Dirichlet allocation; type-2 fuzzy set framework; video sequences; visual word; Hidden Markov models; Humans; Support vector machines; Uncertainty; Video sequences; Visualization; Vocabulary;
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
Print_ISBN :
978-1-4673-2216-4