DocumentCode :
595175
Title :
Composite likelihood estimation for restricted Boltzmann machines
Author :
Yasuda, Makoto ; Kataoka, S. ; Waizumi, Y. ; Tanaka, Kiyoshi
Author_Institution :
Grad. Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan
fYear :
2012
fDate :
11-15 Nov. 2012
Firstpage :
2234
Lastpage :
2237
Abstract :
Generally, learning the parameters of graphical models by using the maximum likelihood estimation is difficult and requires an approximation. Maximum composite likelihood estimations are statistical approximations of the maximum likelihood estimation and are higher-order generalizations of the maximum pseudo-likelihood estimation. In this paper, we propose a composite likelihood method and investigate its properties. Furthermore, we apply this to restricted Boltzmann machines.
Keywords :
Boltzmann machines; approximation theory; higher order statistics; maximum likelihood estimation; solid modelling; graphical models; higher order generalization; maximum composite likelihood estimation; maximum pseudolikelihood estimation; restricted Boltzmann machine; statistical approximation; Computational efficiency; Equations; Graphical models; Learning systems; Maximum likelihood estimation; Systematics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
ISSN :
1051-4651
Print_ISBN :
978-1-4673-2216-4
Type :
conf
Filename :
6460608
Link To Document :
بازگشت