DocumentCode :
595322
Title :
Keyword clustering for automatic categorization
Author :
Qinpei Zhao ; Rezaei, Mahdi ; Hao Chen ; Franti, Pasi
Author_Institution :
Sch. of Comput., Univ. of Eastern Finland, Joensuu, Finland
fYear :
2012
fDate :
11-15 Nov. 2012
Firstpage :
2845
Lastpage :
2848
Abstract :
Processing short texts is becoming a trend in information retrieval. Since the text has rarely external information, it is more challenging than document. In this paper, keyword clustering is studied for automatic categorization. To obtain semantic similarity of the keywords, a broad-coverage lexical resource WordNet is employed. We introduce a semantic hierarchical clustering. For automatic keyword categorization, a validity index for determining the number of clusters is proposed. The minimum value of the index indicates the potentially appropriate categorization. We show the result in experiments, which indicates the index is effective.
Keywords :
information retrieval; pattern clustering; automatic categorization; broad-coverage lexical resource WordNet; information retrieval; keyword clustering; semantic hierarchical clustering; semantic similarity; Clustering algorithms; Google; Humans; Indexes; Internet; Search engines; Semantics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
ISSN :
1051-4651
Print_ISBN :
978-1-4673-2216-4
Type :
conf
Filename :
6460758
Link To Document :
بازگشت