Title :
A modified KLT multiple objects tracking framework based on global segmentation and adaptive template
Author :
Kang Xue ; Vela, Patricio A. ; Yue Liu ; Yongtian Wang
Author_Institution :
Beijing Inst. of Technol., Beijing, China
Abstract :
This paper presents a modified Kanade-Lucas-Tomasi (KLT) tracking framework for multiple objects tracking applications. First, the framework includes a global pixel-level probabilistic model and an adaptive RGB template model to modify traditional KLT tracker more robust to track multiple objects and partial occlusions. Meanwhile, a Merge and Split algorithm is introduced in the proposed framework to track complete occlusions. The advantage of our method is demonstrated on a variety of challenging video sequences.
Keywords :
hidden feature removal; image colour analysis; image segmentation; image sequences; object tracking; probability; KLT tracker; Kanade-Lucas-Tomasi tracking framework; adaptive RGB template model; adaptive template; global pixel-level probabilistic model; global segmentation; merge and split algorithm; modified KLT multiple object tracking framework; partial occlusions; video sequences; Adaptation models; Mathematical model; Object tracking; Principal component analysis; Probabilistic logic; Robustness; Target tracking;
Conference_Titel :
Pattern Recognition (ICPR), 2012 21st International Conference on
Conference_Location :
Tsukuba
Print_ISBN :
978-1-4673-2216-4