• DocumentCode
    595492
  • Title

    A modified KLT multiple objects tracking framework based on global segmentation and adaptive template

  • Author

    Kang Xue ; Vela, Patricio A. ; Yue Liu ; Yongtian Wang

  • Author_Institution
    Beijing Inst. of Technol., Beijing, China
  • fYear
    2012
  • fDate
    11-15 Nov. 2012
  • Firstpage
    3561
  • Lastpage
    3564
  • Abstract
    This paper presents a modified Kanade-Lucas-Tomasi (KLT) tracking framework for multiple objects tracking applications. First, the framework includes a global pixel-level probabilistic model and an adaptive RGB template model to modify traditional KLT tracker more robust to track multiple objects and partial occlusions. Meanwhile, a Merge and Split algorithm is introduced in the proposed framework to track complete occlusions. The advantage of our method is demonstrated on a variety of challenging video sequences.
  • Keywords
    hidden feature removal; image colour analysis; image segmentation; image sequences; object tracking; probability; KLT tracker; Kanade-Lucas-Tomasi tracking framework; adaptive RGB template model; adaptive template; global pixel-level probabilistic model; global segmentation; merge and split algorithm; modified KLT multiple object tracking framework; partial occlusions; video sequences; Adaptation models; Mathematical model; Object tracking; Principal component analysis; Probabilistic logic; Robustness; Target tracking;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition (ICPR), 2012 21st International Conference on
  • Conference_Location
    Tsukuba
  • ISSN
    1051-4651
  • Print_ISBN
    978-1-4673-2216-4
  • Type

    conf

  • Filename
    6460934