• DocumentCode
    596580
  • Title

    A method of parameters selection with higher accuracy for SVM

  • Author

    Fangbin Wang ; Dahua Li

  • Author_Institution
    Dept. of Mech. & Electr. Eng., Anhui Univ. of Archit., Hefei, China
  • fYear
    2012
  • fDate
    18-20 Oct. 2012
  • Firstpage
    248
  • Lastpage
    252
  • Abstract
    Based the analysis of the effect of kernel parameters and penalty parameters on the performance of support vector machine(SVM), the paper has proposed a new method of hydroid simulated annealing technology. The experiment run on the datasets of UCI with the algorithm has shown the result with higher accuracy.
  • Keywords
    pattern classification; simulated annealing; support vector machines; SVM; UCI datasets; classification method; hydroid simulated annealing technology; kernel parameters; parameters selection; penalty parameters; support vector machine; Accuracy; Classification algorithms; Kernel; Optimization; Pattern recognition; Signal processing algorithms; Support vector machines;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Advanced Computational Intelligence (ICACI), 2012 IEEE Fifth International Conference on
  • Conference_Location
    Nanjing
  • Print_ISBN
    978-1-4673-1743-6
  • Type

    conf

  • DOI
    10.1109/ICACI.2012.6463161
  • Filename
    6463161