DocumentCode :
596598
Title :
Nonlinear system identification with modified differential evolution and RBF networks
Author :
Xiaocen Xue ; Jianhong Lu ; Wenguo Xiang
Author_Institution :
Sch. of Energy & Environ., Southeast Univ., Nanjing, China
fYear :
2012
fDate :
18-20 Oct. 2012
Firstpage :
332
Lastpage :
335
Abstract :
In this paper, a new control parameter adaptation scheme is introduced into the classical differential evolution (DE) algorithm. Then, a method for nonlinear system identification is proposed. The method combines modified differential evolution (MDE) and radial basis function (RBF) neural networks, which can auto-configure the structure of RBF networks and obtain the model parameters. The RBF network structure and parameters could be determined simultaneously based on input-output data without a priori knowledge. Finally, an example of nonlinear function identification is given to illustrate the effectiveness of the proposed approach.
Keywords :
evolutionary computation; nonlinear control systems; parameter estimation; radial basis function networks; MDE; RBF network structure; control parameter adaptation scheme; differential evolution algorithm; input-output data; model parameters; modified differential evolution; nonlinear function identification; nonlinear system identification; parameter determination; radial basis function neural networks; Algorithm design and analysis; Approximation algorithms; Nonlinear systems; Radial basis function networks; Sociology; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computational Intelligence (ICACI), 2012 IEEE Fifth International Conference on
Conference_Location :
Nanjing
Print_ISBN :
978-1-4673-1743-6
Type :
conf
DOI :
10.1109/ICACI.2012.6463180
Filename :
6463180
Link To Document :
بازگشت