Title :
Parameter identification and partial synchronization of different chaotic systems
Author :
Ying Yang ; Minghui Jiang ; Wenqing Liu
Author_Institution :
Dept. of Math., China Three Gorges Univ., Yichang, China
Abstract :
This paper proposes an approach of part synchronization to identify the unknown parameters of the different structures of uncertain chaotic system. Based on Asymptotic stability theory, we design an observer to identify the unknown parameters in the uncertain chaotic system. At the same time, in order to achieve the different structure of uncertain Lorenz chaotic system and Coullet synchronization, we construct the synchronous controller and determine its gain range by using the backstepping approach. The simulation results demonstrate the effectiveness of the observer and controller. In comparison with the existing literature, we optimize the observer and the controller which can achieve the part synchronization of the different structures of uncertain chaotic systems.
Keywords :
asymptotic stability; chaos; nonlinear control systems; observers; optimisation; parameter estimation; synchronisation; Coullet synchronization; asymptotic stability theory; backstepping approach; gain range determination; observer design; observer optimization; parameter identification; partial synchronization; synchronous controller; uncertain Lorenz chaotic system; Chaos; Equations; Mathematical model; Observers; Parameter estimation; Synchronization; Trajectory;
Conference_Titel :
Advanced Computational Intelligence (ICACI), 2012 IEEE Fifth International Conference on
Conference_Location :
Nanjing
Print_ISBN :
978-1-4673-1743-6
DOI :
10.1109/ICACI.2012.6463238