Title :
Optimal parameter selection for bilateral filters using Poisson Unbiased Risk Estimate
Author :
Kishan, H. ; Seelamantula, Chandra Sekhar
Author_Institution :
Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India
fDate :
Sept. 30 2012-Oct. 3 2012
Abstract :
Bilateral filters perform edge-preserving smoothing and are widely used for image denoising. The denoising performance is sensitive to the choice of the bilateral filter parameters. We propose an optimal parameter selection for bilateral filtering of images corrupted with Poisson noise. We employ the Poisson´s Unbiased Risk Estimate (PURE), which is an unbiased estimate of the Mean Squared Error (MSE). It does not require a priori knowledge of the ground truth and is useful in practical scenarios where there is no access to the original image. Experimental results show that quality of denoising obtained with PURE-optimal bilateral filters is almost indistinguishable with that of the Oracle-MSE-optimal bilateral filters.
Keywords :
filtering theory; image denoising; mean square error methods; parameter estimation; stochastic processes; MSE; Oracle-MSE-optimal bilateral filter; PURE estimation; PURE-optimal bilateral filter; Poisson noise; Poisson unbiased risk estimation; denoising quality; edge-preserving smoothing; image denoising performance; mean squared error; parameter selection; Estimation; Kernel; Noise measurement; Noise reduction; PSNR; Random variables; Bilateral filter; Denoising; PURE; Poisson noise; Raised-cosine kernel;
Conference_Titel :
Image Processing (ICIP), 2012 19th IEEE International Conference on
Conference_Location :
Orlando, FL
Print_ISBN :
978-1-4673-2534-9
Electronic_ISBN :
1522-4880
DOI :
10.1109/ICIP.2012.6466810