Title :
Design and Fabrication of 1.35-
Laser Diodes With Full Digital-Alloy InGaAlAs MQW
Author :
Heo, Duchang ; Song, Jin Dong ; Han, Il Ki ; Choi, Won Jun ; Lee, Yong Tak
Author_Institution :
Korea Electrotechnol. Res. Inst., Ansan, South Korea
Abstract :
We report full digital-alloy In(Ga1-zAlz)As/InP multiple-quantum well 1.35-μm laser diodes using molecular beam epitaxy. The wells and barriers consist of five pairs of InGaAs/InAlAs (1.5 nm/0.375 nm) and four pairs of InGaAs/InAlAs (0.66 nm/0.98 nm). The separate confinement layer consists of two 60 pairs of InGaAs/InAlAs (0.66 nm/0.98 nm) and makes for an optical confinement factor of 7.07%. We obtained a continuous wave of 200 mW from a single cleaved facet of 1.6-mm long broad area LDs, with 100-μm aperture width at 10°C, and high characteristic temperature T0 of 70 K. In this paper, we find that, with the MBE, the full digital-alloy technique makes bandgap engineering possible through the entire LD structure with only InGaAs/InAlAs short-period superlattices pairs.
Keywords :
III-V semiconductors; gallium compounds; indium compounds; molecular beam epitaxial growth; quantum well lasers; superlattices; InGaAlAs-InP; InGaAs-InAlAs; bandgap engineering; confinement layer; digital alloy technique; molecular beam epitaxy; multiple quantum well laser diodes; optical confinement factor; power 200 mW; short period superlattices pairs; size 1.6 mm; temperature 10 degC; temperature 70 K; wavelength 1.35 mum; Digital alloys; Indium gallium arsenide; Indium phosphide; Optical refraction; Quantum well devices; Temperature; Digital alloy technique; laser diode; molecular beam epitaxy; short-period superlattice;
Journal_Title :
Quantum Electronics, IEEE Journal of
DOI :
10.1109/JQE.2012.2226018