Title :
High-gain DC-DC conversion for parallel photovoltaic arrays
Author :
Johnson, Zachary ; McFowland, Nickolas ; Muller, Lukas ; Peterson, Katlyn ; Jensby, Joshua ; Kimball, Jonathan W.
Author_Institution :
Missouri University of Science and Technology, Department of Electrical and Computer Engineering, 301 W. 16th St., Rolla, 65401 USA
Abstract :
A new approach to photovoltaic (PV) arrays is proposed based on a parallel connection scheme. In a series-connected array, differing insolation due to shading or obstructions causes disproportionate reduction in power output. Because operating voltage is governed more by temperature than by insolation, a parallel-connected array is much more robust to the shading effect. Direct paralleling is inappropriate due to the low voltage of a conventional PV module. Therefore, high-gain dc-dc converters are introduced in the proposed system. Three converter types are discussed. Two use transformers to increase gain and one uses a tapped inductor. Experimental results validate the concept and demonstrate tracking accuracy up to 99.87% despite a 39% difference in insolation, and weighted efficiency of up to 92.9%.
Conference_Titel :
Applied Power Electronics Conference and Exposition (APEC), 2013 Twenty-Eighth Annual IEEE
Conference_Location :
Long Beach, CA, USA
Print_ISBN :
978-1-4673-4354-1
Electronic_ISBN :
1048-2334
DOI :
10.1109/APEC.2013.6520705