Title :
Cache coherence for GPU architectures
Author :
Singh, Inderjit ; Shriraman, A. ; Fung, W.W.L. ; O´Connor, Mike ; Aamodt, T.M.
Author_Institution :
Univ. of British Columbia, Vancouver, BC, Canada
Abstract :
While scalable coherence has been extensively studied in the context of general purpose chip multiprocessors (CMPs), GPU architectures present a new set of challenges. Introducing conventional directory protocols adds unnecessary coherence traffic overhead to existing GPU applications. Moreover, these protocols increase the verification complexity of the GPU memory system. Recent research, Library Cache Coherence (LCC) [34, 54], explored the use of time-based approaches in CMP coherence protocols. This paper describes a time-based coherence framework for GPUs, called Temporal Coherence (TC), that exploits globally synchronized counters in single-chip systems to develop a streamlined GPU coherence protocol. Synchronized counters enable all coherence transitions, such as invalidation of cache blocks, to happen synchronously, eliminating all coherence traffic and protocol races. We present an implementation of TC, called TC-Weak, which eliminates LCC´s trade-off between stalling stores and increasing L1 miss rates to improve performance and reduce interconnect traffic. By providing coherent L1 caches, TC-Weak improves the performance of GPU applications with inter-workgroup communication by 85% over disabling the non-coherent L1 caches in the baseline GPU. We also find that write-through protocols outperform a writeback protocol on a GPU as the latter suffers from increased traffic due to unnecessary refills of write-once data.
Keywords :
cache storage; circuit complexity; general purpose computers; graphics processing units; multiprocessing systems; multiprocessor interconnection networks; performance evaluation; protocols; CMP coherence protocols; GPU application performance; GPU applications; GPU architectures; GPU memory system; L1 miss rates; LCC; TC-Weak; coherence traffic; coherent L1 caches; directory protocols; general purpose chip multiprocessors; globally synchronized counters; interworkgroup communication; library cache coherence; noncoherent caches; scalable coherence; single-chip systems; stalling stores; streamlined GPU coherence protocol; temporal coherence; time-based approach; time-based coherence framework; verification complexity; write-once data; writeback protocol; Coherence; Complexity theory; Graphics processing units; Instruction sets; Protocols; Synchronization; Transient analysis;
Conference_Titel :
High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th International Symposium on
Conference_Location :
Shenzhen
Print_ISBN :
978-1-4673-5585-8
DOI :
10.1109/HPCA.2013.6522351