• DocumentCode
    604147
  • Title

    Verification of Measurements of Cartilaginous Tissue Constructs in the Online Characterizing Bioreactor System

  • Author

    Echagarruga, C.T. ; Scanlon, C.M. ; Tai-Yi Yuan ; Huang, C.-Y Charles ; Wei Yong Gu

  • Author_Institution
    Biomed. Eng. Dept., Univ. of Miami, Coral Gables, FL, USA
  • fYear
    2013
  • fDate
    3-5 May 2013
  • Firstpage
    41
  • Lastpage
    42
  • Abstract
    In cartilage tissue engineering the self-repair of articular cartilage requires monitoring of the cell´s deposition of extracellular matrix, but current methods of observing destroy the sample. Sample destruction does not allow for long-term, continuous monitoring. The objective of the study was to test the bioreactor system ability to non-destructively measure properties of the tissue-engineered constructs. Porcine articular cartilage was decellularized and proteoglycans were removed. Porcine chondrocytes were seeded into the scaffolds using centrifugation within a cell seeding device and the scaffolds were put into culture plates for up to 21 days in culture medium. At different intervals, the scaffolds were analyzed using the bioreactor system, DMMB quantification, and histological techniques. The bioreactor measurements and DMMB quantification both confirmed there was a consistent increase in proteoglycan content within the scaffolds up to the 21 day endpoint, but the proteoglycan content of the constructs was only at 30% of the measured average content in native tissue. The bioreactor was able to measure the proteoglycan content accurately when compared to the measurements taken by DMMB quantification. The results of the study showed the bioreactor is useful for monitoring tissue growth in cartilage tissue engineering constructs non-destructively.
  • Keywords
    bioreactors; cellular biophysics; centrifuges; tissue engineering; DMMB quantification; cartilage tissue engineering; cartilaginous tissue constructs; cell deposition; cell seeding device; centrifugation; chondrocytes; extracellular matrix; histological technique; measurement verification; online characterizing bioreactor system; porcine articular cartilage; proteoglycans; scaffold; self repair; time 21 day; Biomedical measurement; Current measurement; Monitoring; Permeability measurement; Time measurement; Tissue engineering;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Engineering Conference (SBEC), 2013 29th Southern
  • Conference_Location
    Miami, FL
  • Print_ISBN
    978-1-4799-0624-6
  • Type

    conf

  • DOI
    10.1109/SBEC.2013.29
  • Filename
    6525666