DocumentCode
60543
Title
A Hierarchical Bayesian Degradation Model for Heterogeneous Data
Author
Tao Yuan ; Yizhen Ji
Author_Institution
Dept. of Ind. & Syst. Eng., Ohio Univ., Athens, OH, USA
Volume
64
Issue
1
fYear
2015
fDate
Mar-15
Firstpage
63
Lastpage
70
Abstract
Degradation data may be collected from a population with heterogeneous subpopulations. This paper contributes to the development of a new statistical modeling and computation method for analyzing heterogeneous degradation data. We adopt the random-coefficient degradation path approach, and propose a hierarchical Bayesian degradation model. To account for the heterogeneity, we model the unit-to-unit variability via random parameters in a Gaussian mixture model. We developed a computationally convenient algorithm that combines Gibbs sampling for parameter estimation as well as failure-time distribution prediction and Akaike information criterion for determining the number of subpopulations. A numerical example is used to illustrate the advantages of the proposed methodology over existing methods that do not explicitly consider heterogeneity in the degradation data.
Keywords
Bayes methods; Gaussian processes; data analysis; mixture models; parameter estimation; random processes; sampling methods; Akaike information criterion; Gaussian mixture model; Gibbs sampling; computation method; degradation data heterogeneity; failure-time distribution prediction; heterogeneous degradation data analysis; heterogeneous subpopulations; hierarchical Bayesian degradation model; parameter estimation; random parameters; random-coefficient degradation path approach; statistical modeling; unit-to-unit variability; Bayes methods; Computational modeling; Data models; Degradation; Sociology; Statistics; Degradation modeling; Gaussian mixture model; Gibbs sampling; hierarchical Bayesian modeling;
fLanguage
English
Journal_Title
Reliability, IEEE Transactions on
Publisher
ieee
ISSN
0018-9529
Type
jour
DOI
10.1109/TR.2014.2354934
Filename
6894244
Link To Document