Title :
James–Stein Type Center Pixel Weights for Non-Local Means Image Denoising
Author :
Yue Wu ; Tracey, Brian ; Natarajan, Prem ; Noonan, J.P.
Author_Institution :
Dept. of Electr. & Comput. Eng., Tufts Univ., Medford, MA, USA
Abstract :
Non-Local Means (NLM) and its variants have proven to be effective and robust in many image denoising tasks. In this letter, we study approaches to selecting center pixel weights (CPW) in NLM. Our key contributions are 1) we give a novel formulation of the CPW problem from a statistical shrinkage perspective; 2) we construct the James-Stein shrinkage estimator in the CPW context; and 3) we propose a new local James-Stein type CPW (LJSCPW) that is locally tuned for each image pixel. Our experimental results showed that compared to existing CPW solutions, the LJSCPW is more robust and effective under various noise levels. In particular, the NLM with the LJSCPW attains higher means with smaller variances in terms of the peak signal and noise ratio (PSNR) and structural similarity (SSIM), implying it improves the NLM denoising performance and makes the denoising less sensitive to parameter changes.
Keywords :
image denoising; statistical analysis; James-Stein shrinkage estimator; James-Stein type center pixel weights; image pixel; non-local means image denoising; peak signal and noise ratio; statistical shrinkage; structural similarity; Context; Coplanar waveguides; Image denoising; Noise; Noise measurement; Noise reduction; Phase locked loops; Adaptive algorithm; James– Stein estimator; image denoising; non-local means; shrinkage estimator;
Journal_Title :
Signal Processing Letters, IEEE
DOI :
10.1109/LSP.2013.2247755