DocumentCode :
60709
Title :
Design of IIR Filters With Bayesian Model Selection and Parameter Estimation
Author :
Botts, Jonathan ; Escolano, J. ; Ning Xiang
Author_Institution :
Grad. Program in Archit. Acoust., Rensselaer Polytech. Inst., Troy, NY, USA
Volume :
21
Issue :
3
fYear :
2013
fDate :
Mar-13
Firstpage :
669
Lastpage :
674
Abstract :
Bayesian model selection and parameter estimation are used to address the problem of choosing the most concise filter order for a given application while simultaneously determining the associated filter coefficients. This approach is validated against simulated data and used to generate pole-zero representations of head-related transfer functions.
Keywords :
IIR filters; parameter estimation; Bayesian model selection; IIR filters design; concise Illter order; head-related transfer functions; parameter estimation; pole-zero representations; Autoregressive processes; Bayesian methods; Data models; Frequency domain analysis; Mathematical model; Parameter estimation; Transfer functions; Bayesian methods; IIR filters; Monte Carlo methods; head-related transfer function; model comparison; parameter estimation;
fLanguage :
English
Journal_Title :
Audio, Speech, and Language Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1558-7916
Type :
jour
DOI :
10.1109/TASL.2012.2226159
Filename :
6338273
Link To Document :
بازگشت