DocumentCode :
607679
Title :
Spectral learning of mixtures of Hidden Markov Models
Author :
Subakan, Yusuf Cem ; Celiktutan, Oya ; Cemgil, A.T. ; Sankur, B.
Author_Institution :
Elektrik-Elektron. Muhendisligi, Bogazici Univ., Bebek, Turkey
fYear :
2013
fDate :
24-26 April 2013
Firstpage :
1
Lastpage :
4
Abstract :
In this work, we propose a novel approach for clustering Hidden Markov Models (HMMs). We use spectral learning for latent variable models to learn HMM parameters in each cluster. Unlike conventional expectation-maximization algorithms, spectral learning enables us to do parameter estimation in latent variable models without iterating, in local optima free fashion. For this reason, our algorithm is computationally cheaper than clustering HMMs with conventional approaches such as EM.
Keywords :
hidden Markov models; learning (artificial intelligence); parameter estimation; pattern clustering; HMM; conventional expectation-maximization algorithms; hidden Markov models; latent variable models; local optima free fashion; mixture spectral learning; parameter estimation; Clustering algorithms; Computational modeling; Hidden Markov models; Information processing; Machine learning algorithms; Markov processes; Signal processing algorithms; Hidden Markov Model; Mixture Model; Spectral Learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing and Communications Applications Conference (SIU), 2013 21st
Conference_Location :
Haspolat
Print_ISBN :
978-1-4673-5562-9
Electronic_ISBN :
978-1-4673-5561-2
Type :
conf
DOI :
10.1109/SIU.2013.6531340
Filename :
6531340
Link To Document :
بازگشت