Title :
Achieving electrothermal stability in interconnect metal during ESD pulses
Author :
Maloney, Timothy J. ; Lei Jiang ; Poon, S.S. ; Kolluru, K.B.
Author_Institution :
Intel Corp., Santa Clara, CA, USA
Abstract :
A feedback model of on-chip interconnect metal heating during electrostatic discharge (ESD) pulses predicts a temperature waveform and its stability given a heat source function and a thermoelectric circuit model or thermal impulse response Z(t). The pulse delivery circuit influences those conditions along with materials and layout. Z(t) can be extracted from pre-silicon modeling (e.g., finite element) or from post-silicon transmission line pulse (TLP) response, then applied to any ESD pulse conditions. For metal lines embedded in a patterned matrix of inactive metal lines at adjoining levels, pulses produce temperatures converging to a constant value, so the related time constants allow thermal impedance Z(t) to be deduced and thermal properties of the materials checked.
Keywords :
electrostatic discharge; elemental semiconductors; finite element analysis; integrated circuit interconnections; matrix algebra; silicon; ESD pulse conditions; TLP; electrostatic discharge pulses; electrothermal stability; feedback model; finite element; heat source function; metal lines; on-chip interconnect metal heating; patterned matrix; post-silicon transmission line pulse response; pre-silicon modeling; pulse delivery circuit; temperature waveform; thermal impedance; thermal impulse response; thermal properties; thermoelectric circuit model; time constants; Electrostatic discharges; Finite element analysis; Heating; Impedance; Integrated circuit modeling; Metals; Temperature measurement; CDM; ESD; HBM; IC metal; TLP; complex thermal impedance; thermal feedback; thermal impulse response;
Conference_Titel :
Reliability Physics Symposium (IRPS), 2013 IEEE International
Conference_Location :
Anaheim, CA
Print_ISBN :
978-1-4799-0112-8
Electronic_ISBN :
1541-7026
DOI :
10.1109/IRPS.2013.6532070