DocumentCode :
60896
Title :
High Quality Factor Resonant MEMS Accelerometer With Continuous Thermal Compensation
Author :
Zotov, Sergei A. ; Simon, Brenton R. ; Trusov, Alexander A. ; Shkel, Andrei M.
Author_Institution :
Dept. of Mech. & Aerosp. Eng., Univ. of California at Irvine, Irvine, CA, USA
Volume :
15
Issue :
9
fYear :
2015
fDate :
Sept. 2015
Firstpage :
5045
Lastpage :
5052
Abstract :
We report a new silicon Microelectromechanical systems (MEMS) accelerometer based on differential frequency modulation (FM) with experimentally demonstrated thermal compensation over a dynamic temperature environment and μg-level Allan deviation of bias. The sensor architecture is based on resonant frequency tracking in a vacuum packaged siliconon-insulator (SOI) tuning fork oscillator. To address drift over temperature, the MEMS sensor die incorporates two identical tuning forks with opposing axes of sensitivity. Demodulation of the differential FM output from the two simultaneously operated oscillators eliminates common mode errors and provides an FM output with continuous thermal compensation. The first SOI prototype with quality factor of 350000 was built and characterized over a temperature range between 30 °C and 75 °C. Temperature characterization of the FM accelerometer showed less than a 0.5% scale-factor change throughout a temperature range from 30 °C to 75 °C, without any external compensation. This is enabled by an inherently differential frequency output, which cancels common-mode influences, such as those due to temperature. Allan deviation of the differential FM accelerometer revealed a bias instability of 6 μg at 20 s, along with an elimination of any temperature drift due to increases in averaging time. After comparing the measured bias instability with the designed linear range of 20 g, the sensor demonstrates a wide dynamic range of 130 dB. A second design iteration of the FM accelerometer, vacuum-sealed with getter material, was created to maximize Q-factor, and thereby frequency resolution. A Q-factor of 2.4 million was experimentally demonstrated, with a time constant of >20 min.
Keywords :
Q-factor measurement; accelerometers; compensation; demodulation; elemental semiconductors; frequency modulation; iterative methods; microsensors; oscillators; silicon; silicon-on-insulator; temperature measurement; temperature sensors; vibration measurement; μglevel Allan deviation; SOI; Si; common mode error elimination; continuous thermal compensation; demodulation; differential FM accelerometer; differential frequency modulation; gain 130 dB; high quality factor resonant MEMS accelerometer; iteration method; mass 20 g; mass 6 mug; microelectromechanical system; resonant frequency tracking; temperature 30 degC to 75 degC; time 20 s; vacuum packaged silicon-on-insulator tuning fork oscillator; vacuum sealing; Accelerometers; Frequency modulation; Micromechanical devices; Q-factor; Temperature; Temperature sensors; Frequency Modulation; Frequency modulation; MEMS Accelerometer; MEMS accelerometer;
fLanguage :
English
Journal_Title :
Sensors Journal, IEEE
Publisher :
ieee
ISSN :
1530-437X
Type :
jour
DOI :
10.1109/JSEN.2015.2432021
Filename :
7105859
Link To Document :
بازگشت