• DocumentCode
    614432
  • Title

    QRS pattern recognition using a simple clustering approach for continuous data

  • Author

    Noack, A. ; Poll, R. ; Fischer, Wolf-Joachim ; Zaunseder, S.

  • Author_Institution
    Dept. of Wireless Microsyst., Fraunhofer Inst. for Photonic Microsyst. (IPMS), Dresden, Germany
  • fYear
    2013
  • fDate
    16-19 April 2013
  • Firstpage
    228
  • Lastpage
    232
  • Abstract
    This Paper describes a clustering approach to be used for incoming data under computational constraints at an early stage of the signal processing chain. The algorithm is evaluated on the MIT-BIH Arrhythmia Database (MIT) and the European STT-Database (EDB) using a pseudo classification method to estimate the beat identification rates. The algorithm allows an extensive computational simplification, still providing reliable pattern recognition results for normal QRS beat types (Se=96.18 %; +P=99.61 % on MIT and Se=98.26 %; +P=99.95 % on EDB) as well as for ventricular ectopic QRS types (Se=97.61 %; +P=99.64 % on MIT and Se=99.07 %; +P=98.93 % on EDB). Besides its performance in terms of pseudo classification, the computational simplicity and few restrictions regarding its applicability render the proposed clustering method an interesting choice for online-clustering applications even apart from ECG processing.
  • Keywords
    electrocardiography; medical signal processing; pattern classification; pattern clustering; rendering (computer graphics); signal classification; ECG; ETB; European STT-Database; MIT-BIH arrhythmia database; QRS pattern recognition; beat identification rate estimation; clustering approach; computational constraint; continuous data; pseudo classification method; rendering; signal processing chain; ventricular ectopic QRS; Clustering algorithms; Databases; Estimation; Feature extraction; Heart rate variability; Morphology; Pregnancy; Clustering algorithms; Electrocardiography; Pattern recognition;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electronics and Nanotechnology (ELNANO), 2013 IEEE XXXIII International Scientific Conference
  • Conference_Location
    Kiev
  • Print_ISBN
    978-1-4673-4669-6
  • Type

    conf

  • DOI
    10.1109/ELNANO.2013.6552010
  • Filename
    6552010