DocumentCode :
615138
Title :
May the force be with you: Force-aligned signwriting for automatic subunit annotation of corpora
Author :
Koller, Oscar ; Ney, Hermann ; Bowden, Richard
Author_Institution :
Human Language Technol. & Pattern Recognition Group, RWTH Aachen Univ., Aachen, Germany
fYear :
2013
fDate :
22-26 April 2013
Firstpage :
1
Lastpage :
6
Abstract :
We propose a method to generate linguistically meaningful subunits in a fully automated fashion for sign language corpora. The ability to automate the process of subunit annotation has profound effects on the data available for training sign language recognition systems. The approach is based on the idea that subunits are shared among different signs. With sufficient data and knowledge of possible signing variants, accurate automatic subunit sequences are produced, matching the specific characteristics of given sign language data. Specifically we demonstrate how an iterative forced alignment algorithm can be used to transfer the knowledge of a user-edited open sign language dictionary to the task of annotating a challenging, large vocabulary, multi-signer corpus recorded from public TV. Existing approaches focus on labour intensive manual subunit annotations or on data-driven approaches. Our method yields an average precision and recall of 15% under the maximum achievable accuracy with little user intervention beyond providing a simple word gloss.
Keywords :
gesture recognition; iterative methods; automatic subunit annotation; automatic subunit sequences; data-driven approaches; force-aligned sign writing; iterative forced alignment algorithm; knowledge transfer; labour intensive manual subunit annotations; multisigner corpus; process automation; public TV; sign language corpora; sign language data; sign language recognition systems; signing variants; sufficient data; user intervention; user-edited open sign language dictionary; vocabulary; Assistive technology; Databases; Dictionaries; Gesture recognition; Hidden Markov models; Manuals; Vocabulary;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automatic Face and Gesture Recognition (FG), 2013 10th IEEE International Conference and Workshops on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4673-5545-2
Electronic_ISBN :
978-1-4673-5544-5
Type :
conf
DOI :
10.1109/FG.2013.6553777
Filename :
6553777
Link To Document :
بازگشت