• DocumentCode
    617244
  • Title

    Model-based MR parameter mapping with sparsity constraint

  • Author

    Bo Zhao ; Fan Lam ; Wenmiao Lu ; Zhi-Pei Liang

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
  • fYear
    2013
  • fDate
    7-11 April 2013
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    MR parameter mapping (e.g., T1 mapping, T2 mapping, or T*2 mapping) is a valuable tool for tissue characterization. However, its practical utility has been limited due to long data acquisition time. This paper addresses this problem with a new model-based parameter mapping method, which utilizes an explicit signal model and imposes a sparsity constraint on the parameter values. The proposed method enables direct estimation of the parameters of interest from highly undersampled, noisy k-space data. An algorithm is presented to solve the underlying parameter estimation problem. Its performance is analyzed using estimation-theoretic bounds. Some representative results from T2 brain mapping are also presented to illustrate the performance of the proposed method for accelerating parameter mapping.
  • Keywords
    biological tissues; biomedical MRI; brain; data acquisition; image reconstruction; image sequences; mean square error methods; parameter estimation; T2 brain mapping; data acquisition; estimation-theoretic bounds; model-based MR parameter mapping; noisy k-space data; normalized root-mean-square-error; optimization algorithm; parameter estimation; parameter-weighted image sequence; reconstructed R2 maps; sparsity constraint; tissue characterization; Image reconstruction; Maximum likelihood estimation; Optimization; Parameter estimation; Phantoms; Transforms; model-based reconstruction; parameter estimation; parameter mapping; sparsity;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on
  • Conference_Location
    San Francisco, CA
  • ISSN
    1945-7928
  • Print_ISBN
    978-1-4673-6456-0
  • Type

    conf

  • DOI
    10.1109/ISBI.2013.6556397
  • Filename
    6556397