• DocumentCode
    617840
  • Title

    Why parameter control mechanisms should be benchmarked against random variation

  • Author

    Karafotias, Giorgos ; Hoogendoorn, Mark ; Eiben, A.E.

  • Author_Institution
    Comput. Sci. Dept., VU Univ., Amsterdam, Netherlands
  • fYear
    2013
  • fDate
    20-23 June 2013
  • Firstpage
    349
  • Lastpage
    355
  • Abstract
    Parameter control mechanisms in evolutionary algorithms (EAs) dynamically change the values of the EA parameters during a run. Research over the last two decades has delivered ample examples where an EA using a parameter control mechanism outperforms its static version with fixed parameter values. However, very few have investigated why such parameter control approaches perform better. In principle, it could be the case that using different parameter values alone is already sufficient and EA performance can be improved without sophisticated control strategies raising an issue in the methodology of parameter control mechanisms´ evaluation. This paper investigates whether very simple random variation in parameter values during an evolutionary run can already provide improvements over static values. Results suggest that random variation of parameters should be included in the benchmarks when evaluating a new parameter control mechanism.
  • Keywords
    evolutionary computation; EA parameters; evolutionary algorithms; parameter control mechanism evaluation; random variation; Evolutionary computation; Gaussian distribution; Performance gain; Process control; Standards; Tuning; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Evolutionary Computation (CEC), 2013 IEEE Congress on
  • Conference_Location
    Cancun
  • Print_ISBN
    978-1-4799-0453-2
  • Electronic_ISBN
    978-1-4799-0452-5
  • Type

    conf

  • DOI
    10.1109/CEC.2013.6557590
  • Filename
    6557590