DocumentCode
617840
Title
Why parameter control mechanisms should be benchmarked against random variation
Author
Karafotias, Giorgos ; Hoogendoorn, Mark ; Eiben, A.E.
Author_Institution
Comput. Sci. Dept., VU Univ., Amsterdam, Netherlands
fYear
2013
fDate
20-23 June 2013
Firstpage
349
Lastpage
355
Abstract
Parameter control mechanisms in evolutionary algorithms (EAs) dynamically change the values of the EA parameters during a run. Research over the last two decades has delivered ample examples where an EA using a parameter control mechanism outperforms its static version with fixed parameter values. However, very few have investigated why such parameter control approaches perform better. In principle, it could be the case that using different parameter values alone is already sufficient and EA performance can be improved without sophisticated control strategies raising an issue in the methodology of parameter control mechanisms´ evaluation. This paper investigates whether very simple random variation in parameter values during an evolutionary run can already provide improvements over static values. Results suggest that random variation of parameters should be included in the benchmarks when evaluating a new parameter control mechanism.
Keywords
evolutionary computation; EA parameters; evolutionary algorithms; parameter control mechanism evaluation; random variation; Evolutionary computation; Gaussian distribution; Performance gain; Process control; Standards; Tuning; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Evolutionary Computation (CEC), 2013 IEEE Congress on
Conference_Location
Cancun
Print_ISBN
978-1-4799-0453-2
Electronic_ISBN
978-1-4799-0452-5
Type
conf
DOI
10.1109/CEC.2013.6557590
Filename
6557590
Link To Document