Title :
Why parameter control mechanisms should be benchmarked against random variation
Author :
Karafotias, Giorgos ; Hoogendoorn, Mark ; Eiben, A.E.
Author_Institution :
Comput. Sci. Dept., VU Univ., Amsterdam, Netherlands
Abstract :
Parameter control mechanisms in evolutionary algorithms (EAs) dynamically change the values of the EA parameters during a run. Research over the last two decades has delivered ample examples where an EA using a parameter control mechanism outperforms its static version with fixed parameter values. However, very few have investigated why such parameter control approaches perform better. In principle, it could be the case that using different parameter values alone is already sufficient and EA performance can be improved without sophisticated control strategies raising an issue in the methodology of parameter control mechanisms´ evaluation. This paper investigates whether very simple random variation in parameter values during an evolutionary run can already provide improvements over static values. Results suggest that random variation of parameters should be included in the benchmarks when evaluating a new parameter control mechanism.
Keywords :
evolutionary computation; EA parameters; evolutionary algorithms; parameter control mechanism evaluation; random variation; Evolutionary computation; Gaussian distribution; Performance gain; Process control; Standards; Tuning; Vectors;
Conference_Titel :
Evolutionary Computation (CEC), 2013 IEEE Congress on
Conference_Location :
Cancun
Print_ISBN :
978-1-4799-0453-2
Electronic_ISBN :
978-1-4799-0452-5
DOI :
10.1109/CEC.2013.6557590