Title :
Reinforced Similarity Integration in Image-Rich Information Networks
Author :
Jin, Xin ; Luo, Jiebo ; Yu, Jie ; Wang, Gang ; Joshi, Dhiraj ; Han, Jiawei
Author_Institution :
Dept. of Comput. Sci., Univ. of Illinois at Urbana Champaign, Urbana, IL, USA
Abstract :
Social multimedia sharing and hosting websites, such as Flickr and Facebook, contain billions of user-submitted images. Popular Internet commerce websites such as Amazon.com are also furnished with tremendous amounts of product-related images. In addition, images in such social networks are also accompanied by annotations, comments, and other information, thus forming heterogeneous image-rich information networks. In this paper, we introduce the concept of (heterogeneous) image-rich information network and the problem of how to perform information retrieval and recommendation in such networks. We propose a fast algorithm heterogeneous minimum order k-SimRank (HMok-SimRank) to compute link-based similarity in weighted heterogeneous information networks. Then, we propose an algorithm Integrated Weighted Similarity Learning (IWSL) to account for both link-based and content-based similarities by considering the network structure and mutually reinforcing link similarity and feature weight learning. Both local and global feature learning methods are designed. Experimental results on Flickr and Amazon data sets show that our approach is significantly better than traditional methods in terms of both relevance and speed. A new product search and recommendation system for e-commerce has been implemented based on our algorithm.
Keywords :
Internet; electronic commerce; information retrieval; learning (artificial intelligence); recommender systems; social networking (online); Amazon data sets; Flickr data sets; HMok-SimRank; IWSL; Internet commerce Websites; content-based similarity; e-commerce; feature weight learning; global feature learning methods; heterogeneous minimum order k-SimRank algorithm; hosting Websites; image-rich information networks; information retrieval; integrated weighted similarity learning; link-based similarity; local feature learning methods; network structure; product search; product-related images; recommendation system; reinforced similarity integration; social multimedia sharing; social networks; user-submitted images; weighted heterogeneous information networks; Complexity theory; Image edge detection; Information networks; Information retrieval; Mathematical model; Ranking systems; Semantics; Visualization; Information retrieval; image mining; information network; ranking;
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
DOI :
10.1109/TKDE.2011.228