DocumentCode :
618181
Title :
Modeling hierarchy using symbolic regression
Author :
Icke, Ilknur ; Bongard, Josh C.
Author_Institution :
Dept. of Comput. Sci., Univ. of Vermont, Burlington, VT, USA
fYear :
2013
fDate :
20-23 June 2013
Firstpage :
2980
Lastpage :
2987
Abstract :
Symbolic regression (SR) is an attractive modeling approach because it can capture and present, mathematically, relationships between variables of interest. However, given n variables to model, symbolic regression returns a flat list of n equations. As the number of state variables to be modeled scales, interpretation of such a list becomes difficult. Here we present a symbolic regression method that detects and captures hidden hierarchy in a given system. The method returns the equations in a hierarchical dependency graph, which increases the interpretability of the results. We demonstrate that two variations of this hierarchical modeling approach outperform non-hierarchical symbolic regression on a synthetic data suite.
Keywords :
data handling; graph theory; regression analysis; SR; hierarchical dependency graph; hierarchical modeling; nonhierarchical symbolic regression method; state variables; synthetic data suite; Complexity theory; Computational modeling; Data models; Hierarchical systems; Mathematical model; Prediction algorithms; Predictive models; data mining; dependency graph; hierarchy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2013 IEEE Congress on
Conference_Location :
Cancun
Print_ISBN :
978-1-4799-0453-2
Electronic_ISBN :
978-1-4799-0452-5
Type :
conf
DOI :
10.1109/CEC.2013.6557932
Filename :
6557932
Link To Document :
بازگشت