DocumentCode :
619639
Title :
ISODATA classification with parameters estimated by evolutionary approach
Author :
Merzougui, Mourad ; Nasri, Mohsen ; Bouali, B.
Author_Institution :
LABO MATSI, Univ. of Mohammed I, Oujda, Morocco
fYear :
2013
fDate :
8-9 May 2013
Firstpage :
1
Lastpage :
7
Abstract :
The lsodata algorithm is an unsupervised data classification algorithm. Its result depends strongly on two parameters: distance threshold for the union of clusters and threshold of typical deviation for the division of a cluster. A bad choice of these two parameters leads the algorithm to spiral out of control leaving the end only one class. To determine these parameters and improvements to this algorithm, evolution strategies are used. An evolutionary algorithm is adapted to estimate the two optimal thresholds to be used by the algorithm then lsodata. This approach is validated on simulation examples. The experimental results confirm the favorable convergence speed and good performance of the proposed algorithm.
Keywords :
convergence; evolutionary computation; pattern classification; convergence speed; distance threshold; evolutionary approach; isodata classification; parameter estimation; unsupervised data classification algorithm; Classification algorithms; Classification; Isodata algorithm; evolutionary strategies;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems: Theories and Applications (SITA), 2013 8th International Conference on
Conference_Location :
Rabat
Print_ISBN :
978-1-4799-0297-2
Type :
conf
DOI :
10.1109/SITA.2013.6560809
Filename :
6560809
Link To Document :
بازگشت