DocumentCode
620227
Title
Adaptive genetic algorithm for parameter identification of centrifugal compressor
Author
Wang Xiaogang ; Bai Xueliang ; Jiang Bo
Author_Institution
Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China
fYear
2013
fDate
25-27 May 2013
Firstpage
2982
Lastpage
2986
Abstract
Parameters of mechanism model of centrifugal compressor is wide-ranging and artificial selection is difficult to solve. Transforming parameter identification problem of the multistage compressor model into an optimization problem, Adaptive genetic algorithm (AGA) is used to decide the unknown parameters in the model. Model verification results show that the parameters identification can reflect the operating characteristics of centrifugal compressors and the precision of the model is improved.
Keywords
compressors; genetic algorithms; parameter estimation; AGA; adaptive genetic algorithm; artificial selection; centrifugal compressor mechanism model parameter; model verification; multistage compressor model; operating characteristics; optimization problem; parameter identification problem; Adaptation models; Analytical models; Blades; Genetic algorithms; Optimization; Parameter estimation; Temperature measurement; Adaptive Genetic Algorithm; Centrifugal compressor; Mechanism model; Parameter identification;
fLanguage
English
Publisher
ieee
Conference_Titel
Control and Decision Conference (CCDC), 2013 25th Chinese
Conference_Location
Guiyang
Print_ISBN
978-1-4673-5533-9
Type
conf
DOI
10.1109/CCDC.2013.6561456
Filename
6561456
Link To Document