• DocumentCode
    620227
  • Title

    Adaptive genetic algorithm for parameter identification of centrifugal compressor

  • Author

    Wang Xiaogang ; Bai Xueliang ; Jiang Bo

  • Author_Institution
    Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China
  • fYear
    2013
  • fDate
    25-27 May 2013
  • Firstpage
    2982
  • Lastpage
    2986
  • Abstract
    Parameters of mechanism model of centrifugal compressor is wide-ranging and artificial selection is difficult to solve. Transforming parameter identification problem of the multistage compressor model into an optimization problem, Adaptive genetic algorithm (AGA) is used to decide the unknown parameters in the model. Model verification results show that the parameters identification can reflect the operating characteristics of centrifugal compressors and the precision of the model is improved.
  • Keywords
    compressors; genetic algorithms; parameter estimation; AGA; adaptive genetic algorithm; artificial selection; centrifugal compressor mechanism model parameter; model verification; multistage compressor model; operating characteristics; optimization problem; parameter identification problem; Adaptation models; Analytical models; Blades; Genetic algorithms; Optimization; Parameter estimation; Temperature measurement; Adaptive Genetic Algorithm; Centrifugal compressor; Mechanism model; Parameter identification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Decision Conference (CCDC), 2013 25th Chinese
  • Conference_Location
    Guiyang
  • Print_ISBN
    978-1-4673-5533-9
  • Type

    conf

  • DOI
    10.1109/CCDC.2013.6561456
  • Filename
    6561456