DocumentCode
62147
Title
A Scalable, 2.9 mW, 1 Mb/s e-Textiles Body Area Network Transceiver With Remotely-Powered Nodes and Bi-Directional Data Communication
Author
Desai, Narayan ; Yoo, Jerald ; Chandrakasan, Anantha P.
Author_Institution
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
Volume
49
Issue
9
fYear
2014
fDate
Sept. 2014
Firstpage
1995
Lastpage
2004
Abstract
This paper presents transceivers and a wireless power delivery system for a Body-Area Network (BAN) that uses an e-textiles-based physical layer (PHY) capable of linking a diverse set of sensor nodes monitoring vital signs on the user´s body. A central base station in the network controls power delivery and communication resource allotment for every node using a general-purpose on-chip Node Network Interface (NNI). The architecture of the network ensures fault-tolerance, reconfigurability and ease of use through a dual wireless-wireline topology. The nodes are powered at a peak end-to-end efficiency of 1.2% and can transmit measured data at a peak rate of 1 Mb/s. Modulation schemes for communication in both directions have been chosen and a Medium Access and Control (MAC) protocol has been designed and implemented on chip to reduce complexity at the power-constrained nodes, and move it to the base station. While transferring power to a single node at maximum efficiency, the base station consumes 2.9 mW power and the node recovers 34 µW, of which 14 µW is used to power the network interface circuits while the rest can be used to power signal acquisition circuitry. Fabricated in 0.18 µm CMOS technology, the base station and the NNI occupy 2.95 mm 2 and 1.46 mm 2 area, respectively.
Keywords
Base stations; Inductors; Modulation; Oscillators; RLC circuits; System-on-chip; Transistors; Body-area networks; continuous health monitoring; e-textiles; inductive links; integrated medium access protocol; wireless power delivery;
fLanguage
English
Journal_Title
Solid-State Circuits, IEEE Journal of
Publisher
ieee
ISSN
0018-9200
Type
jour
DOI
10.1109/JSSC.2014.2328343
Filename
6840341
Link To Document