DocumentCode :
622314
Title :
GPS/INS/optic flow data fusion for position and Velocity estimation
Author :
Mercado, D.A. ; Flores, Guadalupe ; Castillo, Pedro ; Escareno, J. ; Lozano, Rogelio
Author_Institution :
HEUDIASYC, Compiegne, France
fYear :
2013
fDate :
28-31 May 2013
Firstpage :
486
Lastpage :
491
Abstract :
This paper presents a simple and easy to implement sensor data fusion algorithm, using a Kalman filter (KF) in a loosely coupled scheme, for estimation of the velocity and position of an object evolving in a three dimensional space. A global positioning system (GPS) provides the position measurement while the velocity measurement is taken from the optical flow sensor, finally, the inertial navigation system (INS) gives the acceleration, which is considered as the input of the system. Real time experimental results are shown to validate the proposed algorithm.
Keywords :
Global Positioning System; Kalman filters; inertial navigation; optical sensors; position measurement; sensor fusion; velocity measurement; GPS; INS; KF; Kalman filter; acceleration; global positioning system; inertial navigation system; loosely coupled scheme; optic flow data fusion; optical flow sensor; position estimation; position measurement; sensor data fusion algorithm; velocity estimation; velocity measurement; Estimation; Global Positioning System; Kalman filters; Noise measurement; Optical filters; Optical sensors; Position measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Unmanned Aircraft Systems (ICUAS), 2013 International Conference on
Conference_Location :
Atlanta, GA
Print_ISBN :
978-1-4799-0815-8
Type :
conf
DOI :
10.1109/ICUAS.2013.6564724
Filename :
6564724
Link To Document :
بازگشت