DocumentCode :
62429
Title :
TCAD-Based Simulation Method for the Electrolyte–Insulator–Semiconductor Field-Effect Transistor
Author :
Bongsik Choi ; Jieun Lee ; Jinsu Yoon ; Jae-Hyuk Ahn ; Tae Jung Park ; Dong Myong Kim ; Dae Hwan Kim ; Sung-Jin Choi
Author_Institution :
Sch. of Electr. Eng., Kookmin Univ., Seoul, South Korea
Volume :
62
Issue :
3
fYear :
2015
fDate :
Mar-15
Firstpage :
1072
Lastpage :
1075
Abstract :
A simulation method for the electrolyte-insulator-semiconductor field-effect transistor (EISFET)-type sensor is proposed based on a well-established commercialized semiconductor 3-D technology computer-aided design simulator. The proposed method relies on the fact that an electrolyte can be described using a modified intrinsic semiconductor material because of the similarity between the electrolyte and the intrinsic semiconductor. The electrical double layer of the electrolyte is characterized in the simulation using the Gouy-Chapman-Stern model. Using the proposed simulation method, we extract the Debye lengths depending on phosphate buffered saline solutions with various concentrations and demonstrate that it is possible to simulate the screening effect. Furthermore, we investigate the responses of the EISFET-type silicon nanowire pH sensor based on our simulation method, which shows good agreement with the reported Nernst limit value.
Keywords :
chemical sensors; computerised instrumentation; electrochemistry; electrolytes; electronic engineering computing; elemental semiconductors; field effect transistors; pH measurement; silicon; technology CAD (electronics); 3D semiconductor technology; Debye length; EISFET-type sensor; Gouy-Chapman-Stern model; Nernst limit value; TCAD-based simulation method; computer-aided design simulator; electrical double layer; electrolyte-insulator-semiconductor field-effect transistor; modified intrinsic semiconductor material; phosphate buffered saline solution; screening effect; silicon nanowire pH sensor; Biological system modeling; Biosensors; Educational institutions; Electric potential; Nanobioscience; Silicon; Transistors; Biosensor; Debye length; electrolyte--insulator--semiconductor field-effect transistor (EISFET); electrolyte???insulator???semiconductor field-effect transistor (EISFET); ion-sensitive field-effect transistor (ISFET); pH sensor; screening effect; silicon nanowire (SiNW); technology computer-aided design (TCAD); technology computer-aided design (TCAD).;
fLanguage :
English
Journal_Title :
Electron Devices, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9383
Type :
jour
DOI :
10.1109/TED.2015.2395875
Filename :
7039229
Link To Document :
بازگشت