DocumentCode :
624585
Title :
On the improvement of sea ice classification by fusing C- and L-band SIR-C polarimetrìe quantities
Author :
Qinchuan Xie ; Wenhui Lang ; Xi Zhang ; Xuezhi Yang
fYear :
2013
fDate :
9-11 June 2013
Firstpage :
103
Lastpage :
107
Abstract :
The benefits of combined C-band with L band polarimetric quantities for supervised sea ice classification in the Eastern Weddell Sea, Antarctica, are investigated. In experiments, we compared the performance of a maximum likelihood classifier when used with the combined preferred polarimetric parameter sets against using the individual preferred polarimetric parameter sets. The relationship between classification accuracy and preferred number of polarimetric parameters to use for classification was examined, as well as whether locally linear embedding (LLE)[1] can be used to reduce the dimensionality of the parameter set. Combining deal-frequency polarimetric quantities often improves classifier accuracy against using individual single-frequencies. With the increase of dimensionality of the preferred polarimetric parameter set, the classification using high-dimensionality results in improvements over the smaller subsets or does not make a statistically significant difference. Using all available polarimetric quantities is recommended over the test site, data fusion with locally linear embedding (LLE) does not offer any benefit for sea ice classification.
Keywords :
data reduction; geophysical signal processing; maximum likelihood estimation; oceanographic regions; oceanographic techniques; radar polarimetry; remote sensing by radar; sea ice; sensor fusion; signal classification; Antarctica; C-band SIR-C polarimetry; L-band SIR-C polarimetry; SIR-C polarimetric quantity fusion; classification accuracy; classifier accuracy; data fusion; dual frequency polarimetric quantities; eastern Weddell Sea; fusing; locally linear embedding; maximum likelihood classifier; parameter set dimensionality reduction; polarimetric parameter number; polarimetric parameter sets; sea ice classification improvement; supervised sea ice classification; Accuracy; L-band; Sea ice; Synthetic aperture radar; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Information Processing (ICICIP), 2013 Fourth International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4673-6248-1
Type :
conf
DOI :
10.1109/ICICIP.2013.6568049
Filename :
6568049
Link To Document :
بازگشت