DocumentCode :
624984
Title :
Distance-Based k^m-Anonymization of Trajectory Data
Author :
Poulis, Giorgos ; Skiadopoulos, S. ; Loukides, G. ; Gkoulalas-Divanis, A.
Author_Institution :
Univ. of Peloponnese, Tripolis, Greece
Volume :
2
fYear :
2013
fDate :
3-6 June 2013
Firstpage :
57
Lastpage :
62
Abstract :
The publication of trajectory data opens up new directions in studying human behavior, but it is challenging to perform in a privacy-preserving way. This is mainly because, the identities of individuals, whose movement is recorded in the data, can be disclosed, even after removing identifying information. Existing works to anonymize trajectory data offer privacy, but at a high data utility cost. This is because, they either do not produce truthful data, which is important in many applications, or are limited in their privacy specification component. This paper proposes an approach that overcomes these shortcomings by adapting km-anonymity to trajectory data and by using distance-based generalization. We also develop an effective and efficient anonymization algorithm, which is based on the apriori principle. Our experiments verify that this algorithm preserves data utility well, and it is fast and scalable.
Keywords :
data privacy; formal specification; data privacy preservation; data utility; distance-based generalization; distance-based km-anonymization; privacy specification component; trajectory data anonymistion; Algorithm design and analysis; Data privacy; Educational institutions; Electronic mail; Publishing; Taxonomy; Trajectory; apriori principle; distance based anonymization; generalization; km-anonymity; locations; privacy; trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mobile Data Management (MDM), 2013 IEEE 14th International Conference on
Conference_Location :
Milan
Print_ISBN :
978-1-4673-6068-5
Type :
conf
DOI :
10.1109/MDM.2013.66
Filename :
6569063
Link To Document :
بازگشت