DocumentCode :
625601
Title :
Disk-Cache and Parallelism Aware I/O Scheduling to Improve Storage System Performance
Author :
Prabhakar, R. ; Kandemir, Mahmut ; Myoungsoo Jung
Author_Institution :
NetApp, Inc., USA
fYear :
2013
fDate :
20-24 May 2013
Firstpage :
357
Lastpage :
368
Abstract :
Modern large computing systems employ sophisticated disk I/O systems that are configured to deliver high-throughput, low-latency disk I/O to multiple clients accessing them. However, due to potential interferences among concurrent I/O accesses issued by multiple clients, a disk-cache and disk-level parallelism unaware I/O scheduling algorithm employed by the operating system/storage controller may have a significant impact on both system throughput and I/O latency. In this paper, we propose two fundamentally new disk I/O scheduling techniques. The first technique, called DCAP, performs I/O scheduling in a disk cache aware and parallelism aware manner. The key idea in DCAP is to process simultaneous requests to different disks from the same application/priority class together and reorder them so that they have the highest number of hits in the disk cache. We then propose an enhanced version of DCAP called DCAP-G, that aggregates requests into service groups to alleviate the problem of request starvation that may occur in DCAP in certain cases. We evaluate both DCAP and DCAP-G using a set of I/O workloads from production-based enterprise systems as well as high-performance computing domain. In addition, we also compare the performance of our algorithms to previously proposed I/O scheduling algorithms. Our evaluation shows that, averaged across all our workloads, DCAP improves the average I/O response time, taking maximum advantage of disk access locality and exploiting parallelism among concurrent accesses to multiple disks, by 14.9% over an I/O scheduler that schedules requests on a first-come-first-served (FCFS) basis and also improves by 6.5% over a previously proposed locality-optimal I/O scheduler (SPCTF). In addition to these improvements, DCAP-G improves the average I/O response time by 6.6% over DCAP, leading to an overall 20.7% and 12.0% improvement over FCFS, and SPCTF, respectively.
Keywords :
cache storage; disc storage; scheduling; FCFS basis; I/O response time; I/O scheduling algorithms; concurrent I/O access; disk I/O systems; disk access locality; disk cache aware; disk level parallelism; first-come-first-served basis; improve storage system performance; operating system-storage controller; parallelism aware I/O scheduling; production based enterprise systems; Prefetching; Schedules; Scheduling algorithms; System performance; Throughput; Time factors; Disk Cache; I/O Scheduling; Parallelism;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on
Conference_Location :
Boston, MA
ISSN :
1530-2075
Print_ISBN :
978-1-4673-6066-1
Type :
conf
DOI :
10.1109/IPDPS.2013.59
Filename :
6569825
Link To Document :
بازگشت