DocumentCode :
6258
Title :
Temperature-Dependent Vector Hysteresis Model for Permanent Magnets
Author :
Bergqvist, Anders ; Dingsheng Lin ; Ping Zhou
Author_Institution :
ANSYS Inc., Gothenburg, Sweden
Volume :
50
Issue :
2
fYear :
2014
fDate :
Feb. 2014
Firstpage :
345
Lastpage :
348
Abstract :
Irreversible thermal demagnetization effects can sometimes play a significant role in, for instance, rotating Preisach model (PM) machines. Modeling such phenomena requires field simulation methods such as finite element (FE) analysis in combination with a temperature-dependent vector hysteresis model. This paper explores the feasibility of applying a formalism for temperature-dependent structural hysteresis to magnetics. The net magnetization is expressed as a superposition of contributions from plays. By allowing the anhysteretic curve and the coercivity to depend on temperature, irreversible thermal effects resembling experiments emerge automatically without additional assumptions or adjustable parameters. Incorporating this temperature dependence has negligible impact on the computational efficiency or complexity of the model.
Keywords :
computational complexity; demagnetisation; finite element analysis; magnetic hysteresis; magnetisation; permanent magnet machines; permanent magnets; vectors; FE analysis; Irreversible thermal demagnetization effect; PM machine; anhysteretic curve; computational complexity; computational efficiency; field simulation method; finite element analysis; irreversible thermal effect; net magnetization; permanent magnet; rotating Preisach model machine; temperature-dependent structural hysteresis; temperature-dependent vector hysteresis model; Coercive force; Computational modeling; Demagnetization; Magnetic hysteresis; Magnetization; Materials; Temperature dependence; Magnetic hysteresis; permanent magnets; temperature;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2013.2282822
Filename :
6748921
Link To Document :
بازگشت