Title :
A Novel Tool for Breakdown Probability Predictions on Multi-Electrode Multi-Voltage Systems
Author :
Bettini, P. ; Pilan, N. ; Specogna, Ruben
Author_Institution :
Dipt. di Ing. Ind., Univ. di Padova, Padua, Italy
Abstract :
An innovative approach for the voltage breakdown prediction in high-voltage systems, insulated by large vacuum gaps, is presented. It is based on the correlation between the clump mechanism and a statistical approach to the breakdown probability. The aim of this paper is twofold. First, the numerical solution of 3-D electrostatic problems by a couple of complementary formulations is presented. Second, an efficient post-processing tool is introduced, based on the analytical solution of the equations of motion in a domain covered by a tetrahedral mesh, to estimate the breakdown probability associated to the electrically charged microparticles leaving one electrode and clashing to the electrode with opposite polarity with sufficient energy to get vaporization. This approach has been benchmarked on a reference configuration (sphere/plane) problem and applied to calculate the particle trajectories in a very complex multi-electrode multi-voltage system.
Keywords :
electrostatics; finite element analysis; statistical analysis; vacuum breakdown; vacuum insulation; 3D electrostatic problems; clump mechanism; electrically charged microparticles; equations of motion; high-voltage systems; large vacuum gaps; multielectrode multivoltage systems; particle trajectories; plane problem; reference configuration problem; sphere problem; statistical approach; tetrahedral mesh; vaporization; voltage breakdown probability predictions; Electric breakdown; Electrodes; Electrostatics; Equations; Mathematical model; Standards; Trajectory; Electrostatics; finite-element method; high voltage; ion beam;
Journal_Title :
Magnetics, IEEE Transactions on
DOI :
10.1109/TMAG.2013.2281851