DocumentCode
628272
Title
Experts lift differently: Classification of weight-lifting athletes
Author
Adelsberger, Rolf ; Troster, Gerhard
Author_Institution
Federal Institute of Technology Zurich, Switzerland
fYear
2013
fDate
6-9 May 2013
Firstpage
1
Lastpage
6
Abstract
The process of learning a novel body movement exposes a student to multiple difficulties. Understanding the range of motion is fundamental for learning to control the involved body parts. Theory and instructions need to be mapped to body movements: a student not only needs to mimic or copy the range of motion of individual body parts, but he also needs to trigger the motion fragments in the correct order. Not only correct order is important, but also precise timing. If the movements in questions are intensified by additional load, optimality of the motion patterns becomes crucial. Sub-optimal execution of an exercise reduces the performance or can even induce failure of completion. Correct execution is a subtle interplay between the correct forces at the right times. In this paper, we present a sensor system that is able to categorize movements into multiple quality classes and athletes into two experience classes. For this work we conducted a study involving 16 athletes performing squat-presses, a simple yet non-trivial exercise requiring barbells. We calculated various features out of raw accelerometer data acquired by two inertial measurement units attached to the athletes´ bodies. We evaluated exercise performances of the participants ranging from beginners to experts. We introduce the biomechanical properties of the movement and show that our system can differentiate between four quality classes (poor, fair, good, perfect) with an accuracy above 93% and discriminate between a beginner athlete and an advanced athlete with an accuracy of more than 94%.
Keywords
Acceleration; Accelerometers; Accuracy; Biomechanics; Hip; Mathematical model; Training;
fLanguage
English
Publisher
ieee
Conference_Titel
Body Sensor Networks (BSN), 2013 IEEE International Conference on
Conference_Location
Cambridge, MA, USA
ISSN
2325-1425
Print_ISBN
978-1-4799-0331-3
Type
conf
DOI
10.1109/BSN.2013.6575458
Filename
6575458
Link To Document