DocumentCode :
628801
Title :
Denoising MEG sensor data using wavelets
Author :
Sreenathan, G. ; Sadanandan, G.K.
Author_Institution :
Dept. of Electron. & Commun., Toc H Inst. of Sci. & Technol., Ernakulam, India
fYear :
2013
fDate :
4-6 June 2013
Firstpage :
1
Lastpage :
5
Abstract :
Magnetoencephalography (MEG) is a noninvasive technology for analyzing cerebral neuronal activity. The noise level in the MEG data is large enough to affect the desired signal. This paper describes a denoising technique based on Wavelet Transform (WT). It compares denoising MEG data with different wavelet techniques like Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT) and Stationary Wavelet Transform (SWT). Here WT is implemented using Multiresolution Analysis (MRA). Spectrogram of original MEG data and its denoised version are also compared.
Keywords :
magnetoencephalography; medical signal processing; signal denoising; wavelet transforms; MEG sensor data; cerebral neuronal activity; magnetoencephalography; multiresolution analysis; signal denoising technique; wavelet transform; Discrete wavelet transforms; Multiresolution analysis; Noise measurement; Noise reduction; Wavelet packets; Discrete Wavelet Transform; Magnetoencephalography; Spectrogram; Stationary Wavelet Transform; Wavelet Packet Transform;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy (AICERA/ICMiCR), 2013 Annual International Conference on
Conference_Location :
Kanjirapally
Print_ISBN :
978-1-4673-5150-8
Type :
conf
DOI :
10.1109/AICERA-ICMiCR.2013.6575998
Filename :
6575998
Link To Document :
بازگشت