• DocumentCode
    629552
  • Title

    Document clustering using GIS visualizing and EM clustering method

  • Author

    Dogdas, Tayfun ; Akyokus, Selim

  • Author_Institution
    Dogus Univ., Istanbul, Turkey
  • fYear
    2013
  • fDate
    19-21 June 2013
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    This paper uses expectation-maximization clustering algorithm and a simple multidimensional projection method for visualization and data reduction. The multidimensional data is projected into a 2D Cartesian coordinate system. We run EM and K-Means algorithms on the transformed data. The system uses Microsoft Spatial Data Base Engine as a GIS tool for visualization. We used Expectation-Maximization (EM) and K-Means clustering algorithms of the Microsoft Analysis Services. The simple multidimensional projection method used in this paper tries to preserve the similarity relationships in original datasets.
  • Keywords
    data reduction; data visualisation; document handling; expectation-maximisation algorithm; geographic information systems; pattern clustering; 2D Cartesian coordinate system; EM clustering method; GIS visualizing method; Microsoft analysis services; Microsoft spatial data base engine; data reduction; document clustering; expectation-maximization clustering algorithm; geographic information system; k-means clustering algorithms; multidimensional data projection method; similarity relationship preservation; Algorithm design and analysis; Clustering algorithms; Data mining; Data visualization; Geographic information systems; Iris; Spatial databases; Clustering; GIS; Performance optimization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Innovations in Intelligent Systems and Applications (INISTA), 2013 IEEE International Symposium on
  • Conference_Location
    Albena
  • Print_ISBN
    978-1-4799-0659-8
  • Type

    conf

  • DOI
    10.1109/INISTA.2013.6577647
  • Filename
    6577647