Title :
Document clustering using GIS visualizing and EM clustering method
Author :
Dogdas, Tayfun ; Akyokus, Selim
Author_Institution :
Dogus Univ., Istanbul, Turkey
Abstract :
This paper uses expectation-maximization clustering algorithm and a simple multidimensional projection method for visualization and data reduction. The multidimensional data is projected into a 2D Cartesian coordinate system. We run EM and K-Means algorithms on the transformed data. The system uses Microsoft Spatial Data Base Engine as a GIS tool for visualization. We used Expectation-Maximization (EM) and K-Means clustering algorithms of the Microsoft Analysis Services. The simple multidimensional projection method used in this paper tries to preserve the similarity relationships in original datasets.
Keywords :
data reduction; data visualisation; document handling; expectation-maximisation algorithm; geographic information systems; pattern clustering; 2D Cartesian coordinate system; EM clustering method; GIS visualizing method; Microsoft analysis services; Microsoft spatial data base engine; data reduction; document clustering; expectation-maximization clustering algorithm; geographic information system; k-means clustering algorithms; multidimensional data projection method; similarity relationship preservation; Algorithm design and analysis; Clustering algorithms; Data mining; Data visualization; Geographic information systems; Iris; Spatial databases; Clustering; GIS; Performance optimization;
Conference_Titel :
Innovations in Intelligent Systems and Applications (INISTA), 2013 IEEE International Symposium on
Conference_Location :
Albena
Print_ISBN :
978-1-4799-0659-8
DOI :
10.1109/INISTA.2013.6577647