• DocumentCode
    630691
  • Title

    Decomposition based recursive least squares parameter estimation for Hammerstein nonlinear controlled autoregressive systems

  • Author

    Huibo Chen ; Feng Ding

  • Author_Institution
    Lab. of Adv. Process Control for Light Ind. (Minist. of Educ.), Jiangnan Univ., Wuxi, China
  • fYear
    2013
  • fDate
    17-19 June 2013
  • Firstpage
    2436
  • Lastpage
    2441
  • Abstract
    A decomposition recursive least squares algorithm is proposed for the identification of a Hammerstein nonlinear controlled autoregressive system which is a memoryless nonlinear block followed by a linear ARX subsystem (H-CAR system for short). Using the decomposition based hierarchical identification principle, this paper decomposes the H-CAR system into several subsystems and then identifies each subsystem and finally separates the parameters of the original system from obtained parameter estimates. The proposed algorithm requires less computation burden compared with the recursive least squares algorithm. A simulation example is provided.
  • Keywords
    least squares approximations; nonlinear control systems; parameter estimation; recursive estimation; H-CAR system; Hammerstein nonlinear controlled autoregressive systems; decomposition based hierarchical identification principle; decomposition based recursive least squares parameter estimation; linear ARX subsystem; memoryless nonlinear block; Autoregressive processes; Computational modeling; Least squares approximations; Mathematical model; Nonlinear systems; Parameter estimation; Signal processing algorithms;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference (ACC), 2013
  • Conference_Location
    Washington, DC
  • ISSN
    0743-1619
  • Print_ISBN
    978-1-4799-0177-7
  • Type

    conf

  • DOI
    10.1109/ACC.2013.6580199
  • Filename
    6580199