Title :
Regularization and improved interpretation of linear data mappings and adaptive distance measures
Author :
Strickert, Marc ; Hammer, Barbara ; Villmann, Thomas ; Biehl, Michael
Abstract :
Linear data transformations are essential operations in many machine learning algorithms, helping to make such models more flexible or to emphasize certain data directions. In particular for high dimensional data sets linear transformations are not necessarily uniquely determined, though, and alternative parameterizations exist which do not change the mapping of the training data. Thus, regularization is required to make the model robust to noise and more interpretable for the user. In this contribution, we characterize the group of transformations which leave a linear mapping invariant for a given finite data set, and we discuss the consequences on the interpretability of the models. We propose an intuitive regularization mechanism to avoid problems in under-determined configurations, and we test the approach in two machine learning models.
Keywords :
data handling; learning (artificial intelligence); adaptive distance measurement; finite data set; linear data mappings; linear data transformations; machine learning algorithms; regularization mechanism; Eigenvalues and eigenfunctions; Measurement; Null space; Prototypes; Symmetric matrices; Training; Vectors;
Conference_Titel :
Computational Intelligence and Data Mining (CIDM), 2013 IEEE Symposium on
Conference_Location :
Singapore
DOI :
10.1109/CIDM.2013.6597211