• DocumentCode
    636409
  • Title

    Automatic optimization of parameters for seizure detection systems

  • Author

    Dollfuss, P. ; Hartmann, Manfred M. ; Skupch, A. ; Furbass, F. ; Kluge, T.

  • Author_Institution
    Austrian Inst. of Technol., Vienna, Austria
  • fYear
    2013
  • fDate
    3-7 July 2013
  • Firstpage
    1976
  • Lastpage
    1979
  • Abstract
    A parameter optimization method for an automatic seizure detection algorithm using the Nelder Mead algorithm is presented. A suitable cost function for joint optimization of sensitivity and false alarm rate is proposed. The optimization is done using EEG datasets from 23 patients and validated on datasets from another 23 patients. The resulting sensitivity was 82.3% with a false alarm rate of 0.24 FA/h. This is a reduction of the false alarm rate by 1.58 FA/h with an acceptable loss of sensitivity of 4.3%.
  • Keywords
    electroencephalography; medical disorders; medical signal detection; optimisation; parameter estimation; EEG datasets; Nelder Mead algorithm; automatic seizure detection algorithm; cost function; false alarm rate; parameter automatic optimization; parameter optimization method; seizure detection system; sensitivity joint optimization; Cost function; Electroencephalography; Epilepsy; Optimization methods; Sensitivity; Training;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE
  • Conference_Location
    Osaka
  • ISSN
    1557-170X
  • Type

    conf

  • DOI
    10.1109/EMBC.2013.6609916
  • Filename
    6609916